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EXECUTIVE SUMMARY

Hyperspectral imaging (HSI) sensors provide imagery with hundreds of spectral bands, typ-
ically covering VNIR and/or SWIR wavelengths. This high spectral resolution offers promise for
many applications, but it also produces enormous volumes of data, which may be problematic for
storage and transmission. Lossy compression may therefore be necessary, but application perfor-
mance degradation that results from compression is of concern. This report documents results for
a spectral-spatial lossy compression scheme and a variety of applications: normalized difference
vegetation index (NDVI), integrated column water vapor (CWV), and background classification.

The compression scheme first performs principal-components analysis spectrally, then dis-
cards many of the lower-importance principal-component (PC) images, and then applies JPEG2000
spatial compression to each of the individual retained PC images. Two different rate-allocation
methods, which select the spatial compression ratios, are considered.

The assessment of compression effects considers general-purpose distortion measures, such
as root-mean-square difference. It also examines changes in NDVI and CWV data products and
proposes statistical tests for deciding whether compression causes significant degradations in clas-
sification results.
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1. INTRODUCTION

A hyperspectral imaging (HSI) sensor gathers radiance imagery over a wide range of the electromag-
netic spectrum with high spectral resolution. The sensor produces an N, x N. image in which each pixel
has N, ; 100-200 spectral bands. Such an image is commonly referred to as an N, x Ny x Nc cube.
For example, the HYDICE (Hyperspectral Digital Imagery Collection Experiment [22]) airborne HSI sen-
sor produces 320 x 320 x 210 major frames of 16-bit values, with spectral coverage from 400-2500 nm
and spectral resolution of 5-16 nm per band. Several major frames can be concatenated to form a larger
cube; i.e., four major frames yield a sample HYDICE cube of dimensions 320 x 1280 x 210. HSI thus pro-
vides both spatial coverage and rich spectral information, which facilitates applications such as background

classification, material identification, and target detection.

On the other hand, the sheer volume of data produced by an HSI sensor creates problems of storage
and transmission. The example 320 x 1280 x 210 HYDICE cube requires 153.8 MB of storage. Lossless
compression can usually reduce this requirement by a factor of 2-3, which still puts the storage require-
ment in the tens of megabytes and may be insufficient for timely transmission, dissemination, or archiving.
Lossy compression then becomes necessary. Because lossy compression discards potentially useful infor-
mation, researchers are interested in evaluating its effects on application performance [20, 24, 26]. This
report employs a simple but effective lossy compression scheme and studies its effects on a number of ap-
plications, namely normalized difference vegetation index, integrated column water vapor, and background

classification.

1.1 SELECTION OF COMPRESSION STRATEGY

This report focuses on what can best be termed "general-purpose lossy compression." To place the
report in context, this section discusses the matter of selecting a compression strategy. The selection of a
compression strategy involves factors such as whether or not lossy compression can be tolerated, the re-
quired amount of lossless or lossy compression, and the intended application area. Other factors include
implementation complexity, onboard or ground-based processing, latency, error resilience, cost, and stan-
dardization.

Figure 1 presents a decision flowchart that considers the most general aspects of compression: namely,
lossless or lossy compression, the end application for the decompressed data, and the distortion measure
should lossy compression be required. The other factors mentioned above certainly also play a significant
role, but the flowchart addresses the basic question of whether lossy compression is even necessary, and if
so, whether existing or novel compression techniques are needed.

The top of the flowchart posits the most basic question: Is lossless compression required, and is
it achievable within the problem constraints? If so, lossy compression becomes unnecessary. However,
problem constraints can make lossless compression impractical or impossible. A space-borne HSI sensor
with limited downlink capability is a prime example. Even though the sensor can gather large amounts

of data, there is insufficient bandwidth to transmit all of the data to the ground. In such situations, lossy
compression becomes necessary.

Within the realm of lossy compression, other decisions follow. The second question asks whether



S~Use lossy

Figure 1. Flowchart for selection of compression strategy.

the intended application and/or data products are already known and will never change. If so, then a triv-

ial solution follows: Simply perform the application processing or compute the desired data products, and

then use lossless compression of the results. (This solution assumes that the products have far lower stor-
age/transmission requirements than the unprocessed data.) An example is target detection. One could apply

the detection algorithm to generate a binary-valued image, where cleared (0) pixels indicate "no target" and
set (1) pixels indicate "target." This binary image requires far less storage or transmission bandwidth than

the HSI data from which it was derived.

In most cases, the trivial solution is not a realistic choice. Then the third question comes into play:
Are the distortion measures used in traditional lossy compression methods sufficient? If so, then the wealth
of knowledge, experience, and implementations of traditional lossy compression methods can be employed.

For example, an enormous amount of research and development has been devoted to the theory and practice
of lossy compression under the mean square difference (also called mean square error) distortion measure.

On the other hand, if traditional distortion measures do not apply, then new ones must be developed, along

with suitable lossy compression methods.

1.2 APPROACHES TO LOSSY COMPRESSION AND APPLICATION PROCESSING

Lossy compression followed by application processing is a two-stage process, as depicted in Figure 2.

The first stage performs lossy compression on the original, noncompressed HSI cube, denoted by X. The

compressed version of the cube is a bitstream (not shown) that can be stored or transmitted more efficiently
than Xs decompression of the bitstream yields a decompressed, approximate cube, denoted byX. In the
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Figure 2. Lossy compression and application processing.

second stage, application processing is performed onX(. As a result of lossy compression, X is not an exact
replica of X; the inaccuracy between X and X is given by the distortion D(X,X) _> 0. Such distortion
means that the results of application processing onX will generally differ from the results that would have
been obtained if processing had been applied directly to X. Moreover, good application performance - not
storage or bandwidth reduction - is usually the ultimate goal.

We identify four possible approaches to this problem. In the conventional approach, compression and
processing are designed without consideration of one another. Compression attempts to minimize D(XX)
subject to a constraint on the size of the bitstream for the compressed cube. Processing is designed to
operate on the original, noncompressed data X. The conventional approach is based on the idea that, ifX is
a sufficiently faithful approximation of X, then processingX should produce results similar to those from
processing X.

In the backward and forward approaches, one of the two stages is redesigned to accommodate the
other, which is held fixed. Knowledge about the fixed stage is carried backward or forward (hence the
name) into the other stage. In the backward approach, knowledge about an existing processing stage -

intended for use on X - is carried backward into the compression stage, which is altered in an attempt to
make X "fit" as closely as possible with the processing method. Conversely, in the forward approach, the
compression stage remains fixed, and knowledge about its behavior is carried forward into the processing
stage, which is modified to process X instead of X.

Finally, the joint approach redesigns both stages together to obtain the best overall performance.
Some realistic constraints must be introduced to prevent this approach from degenerating into a trivial solu-
tion (cf. Section 1. 1). Consider target detection: With no constraints, a trivial joint solution simply performs
detection on X, produces a binary detection-indicator image X, (e.g., a pixel in X equals 0 to indicate
"target present" or I to indicate "target absent"), and then compressesX losslessly. We adopt the conven-
tional approach for several reasons. First, the backward, forward, and joint approaches tend to be highly
specialized for a single application, while there is a wide variety of HSI applications (e.g., environmental
monitoring, background classification, material identification, target detection, and anomaly detection). The
assumptions and algorithms employed by different applications also vary significantly. The conventional
approach means that the compression stage can be implemented separately and its effects then evaluated on
a number of applications. Second, the nonconventional approaches often introduce additional assumptions
about the characteristics, such as probability distributions, of the data involved. However, characterization
of the statistical properties of HSI data remains an ongoing challenge [19, 29]. Finally, lossy compression

3



and application processing are each sophisticated fields in their own right, and the associated algorithms are
very complicated. The nonconventional approaches can become intractable, and the results are limited to a
particular application. For these reasons, most current work on examining the effects of HSI compression
on applications has taken the conventional approach, and we do so in this report.

1.3 UNDERCOMPRESSION AND OVERCOMPRESSION

We now introduce the intuitive notions of undercompression and overcompression. Increasing the
amount of compression discards more information, which may degrade application performance. As more
information is discarded during compression, the more likely application performance degradation becomes.
If too much information is discarded due to excessive compression, then performance becomes unaccept-
able. Ideally, we would like to compress as much as possible while still maintaining acceptable performance.
We use the terms undercompression and overcompression to describe the failure to reach this optimal bal-
ance.

In undercompression, performance remains acceptable, but we could have compressed even more.
The penalty for undercompression is excessive storage or transmission bandwidth. While such wastefulness
could be expensive, if we realize that we have undercompressed the data, we might be able to compress it
further or increase the compression ratio in subsequent collections.

In contrast, overcompression results in both unacceptable performance and irretrievable loss of in-
formation. Even if we discover that our application is underperforming and requires data with greater
accuracy, there is no way to recover the discarded information. The penalty for such a mistake could be
serious. We therefore assume that undercompression is preferable to overcompression. We choose to err on
the side of caution, and our assessments will reflect this assumption.

1.4 NOTATION

We expand the notation here. As introduced above, we denote the original, noncompressed cube by X
and a decompressed cube by X. Let N, and N. denote the number of spatial columns and rows, respectively,
where a spatial coordinate is given by (x, y), with x C {1, 2,... , Nr}, y E {1,2,..... Ny}. Similarly, we
denote the number of spectral bands by Nc, and we indicate the index of a band by k E {1, 2, ... , N,.}. A
single data value in X is indicated by X[x, y, k]. Letting :i. = (1,2,... ,N,) and f (1,2,... , Ny), we
use X[F, Y, k] to indicate the entire Nx x Ny image of data values in the kth band of X.

With k similarly defined, the notation X[x, y, k] denotes the spectrum associated with spatial location
(x, y). X[x, y, k] is sometimes treated as a column vector in N,.-dimensional Euclidean space. The spectral
angle between two spectra i! and 6 is

Of,)=arccos Oillll 0 l

where (-,.) denotes the usual inner product, and ii'Ill = . Spectral angle is sensitive to differences
in the spectral shapes of il and iý but insensitive to illumination changes: Scalar multiplication of ft or V does
not change 0(il, 6).
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1.5 RATE AND COMPRESSION RATIO

For any given data representation (e.g., X or X), the rate of the representation is defined as rate =
(number of bits required by the representation)/(number of data values represented), which has units of bits
per data value. For hyperspectral data, one often employs units of bits per pixel per band (bpppb). The raw
data values in X are typically stored using B-bit precision (e.g., 8-, 10-, or 16-bit integers), so the rate of X
is B bpppb. Although the values in X also have a bitdepth of B, the associated bitstream is essentially an
identical description of X. Consequently, the rate of X is

R = bitstream length for X [bits]number of data values represented bpppb. (2)

Similarly, define the compression ratio r by

raw size of X [bits]
1' = (3)

bitstream length for X [bits]
Hence, the compression ratio is a dimensionless number. Finally, R and r are simply related by

B
R =-. (4)

1.6 DISTORTION MEASURES

The preceding section discussed the rate R of the (de)compressed dataX. However, k only approx-
imates X. As mentioned in the introduction, the distortion between X andX quantifies the inaccuracy of
the approximation. Most lossy compression systems are designed with the goal of minimizing distortion for
a given rate.

In lossy compression, by far the most common distortion measure is the mean square difference
(MSD),

12
MSD (X,) N ([x, y,k] -k [xyk) (5)

x y k

MSD has a natural interpretation as the power of the error X-X. Additionally, its differentiability facilitates
analysis, and it is easy to compute. We also make use of the root MSD (RMSD),

RMSD(X,X) = VMSD(XX). (6)

Although our lossy compression scheme employs MSD, we can compute additional distortion mea-
sures to see how they relate to application performance. We also use mean absolute difference (MAD) and
mean spectral angle difference (MSAD), defined as

MAD (xx) = I NYN. SEE X[x, y,k] - k[x,y,k] , (7)
x y k

MSAD (X, x) = 1N E 0 (X [x, y, k], kX[X, y, A). (8)
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2. COMPRESSION SCHEME

The compression scheme that we are evaluating consists of the cascade of spectral compression and
spatial compression. Spectral compression is accomplished by applying principal-components analysis
(PCA) in the spectral dimension. The resulting principal-component images (PC images) are then com-
pressed spatially and independently using the JPEG2000 standard. Other researchers [23, 13, 24, 20] have
implemented similar schemes. In this section, we elaborate on the main parts of the scheme, which is
diagrammed in Figure 3.

2.1 SPECTRAL COMPRESSION WITH PCA

In the signal-processing literature, PCA is commonly referred to as the Karhunen-Lve Transform
(KLT). The details of PCA/KLT are well documented in the literature [I I], so we only briefly review it.
Initially, one computes the spectral mean vectorX and spectral covariance matrix Kxx of X. Next, Kxx
is factored into the form KVx = J(ADAT, where A is a diagonal matrix whose diagonal entries are the
eigenvalues Ak of Kxx arranged in descending order (A1 >_ A2 > ... > AN,), and 4D is a unitary matrix
whose columns are the corresponding eigenvectors of Kxx. The energy of X is then

N,7
energy in X ZAk. (9)

k=1

Finally, the transform matrix 4)T is applied to each spectrum in X to create a PCA/KLT cube Y via

Y[x,Yk] = 1 T (X[X, y, - ) . (10)

The kth band Y[Y, y, k] is called the kth PC image.

To compress, some of the PC images in Y are first discarded. The retained PC images may then be
compressed spatially - the subject of Section 2.2 - and stored or transmitted as a bitstream. X and 4,
are also stored or transmitted as side information for decompression. We assume these values are noncom-
pressed, Bide-bit quantities, so they require &ide (N, + N,2)Bside bits.

To decompress, the bitstream is first decompressed to obtain approximations of the retained PC im-
ages, and any discarded PC images are filled with zeroes to make an approximate PCA/KLT cubeY]. Then,
with the aid of the side information X and 4, the decompressed HSI cube k is computed via

Sy, k] = [x,,y, k] X. (1)

PCA/KLT has a number of appealing properties for compression and signal approximation. First,
since ýD is unitary, energy is preserved. This property is useful when the MSD distortion measure is used
because MSD(X, X) = MSD(Y, f). Second, PCA/KLT decorrelates X spectrally: the spectral covariance
matrix K,•. = A, so the PC images are uncorrelated, which is convenient if they are to be processed
independently. Also, the variance of the kth PC image is ( ? Ak. Third, among all unitary transforms,

7
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drawbacks [30]. First, PCA/KLT is data-dependent, so ¢• will change from one cube to another, andX andSmust be stored or transmitted as side information. Second, :T does not have any special structure, so the

computational complexity of PCA/KLT is O(Atc2). In contrast, other data-independent, fast signal transfor-mations (e.g., discrete cosine or wavelet transform) require no side information and have complexities of
O(NC log NC). Third, most of the optimality properties of PCA/KLT are associated with Gaussian data and

MSD distortion. However, HSI data do not usually have a Gaussian distribution [19, 29], and MSD may beinappropriate for HSI applications such as classification and identification.

Nevertheless, PCAIKLT remains an extremely popular and effective tool in the remote-sensing andIossy-compression communities. MSD does offer an analytically tractable distortion measure, and it isreasonable to expect acceptable application performance if X remains faithful to X. Also, the energy-
preserving, energy-packing, and decorrelation properties always hold, and PCA/KLT often provides good
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compression performance for non-Gaussian data. PCA/KLT forms a crucial part of many HSI compression
schemes [13, 20, 23, 24, 26], including ours.

2.2 SPATIAL COMPRESSION WITH JPEG2000

Because PCA/KLT is performed only in the spectral direction, the PC images are spectrally un-
correlated, but each individual PC image Y[i! i, k] remains spatially correlated. Spatial compression is
therefore applied to each individual PC image I; our compression scheme employs JPEG2000, a state-
of-the-art, wavelet-based image-compression standard [27]. JPEG2000 possesses a number of important
properties. First and foremost, it has significantly better rate-distortion performance than many other,
older image-compression methods, including JPEG. Additional features include progressive transmission,
random-access and region-of-interest coding, and error resilience. The details of the standard go far beyond
the scope of this paper, so we only describe the basic operations here.

Given the kth input PC image Y[I, y-, k], the JPEG2000 compression scheme computes a two-dimensional,
separable discrete wavelet transform (DWT) W[Y, W, k] of Y[Y, Y, k]; our implementation uses the irre-
versible 9-7 wavelet. Next, the wavelet coefficients in W[Y, Y', k] are quantized to produce the quantized
wavelet coefficients Wq[Y, i, k]. Each subband of Wq[Y, y-, k] is then partitioned into rectangular code-
blocks, and each code-block is coded independently using arithmetic encoding in conjunction with an op-
erational rate-distortion optimization algorithm known as EBCOT (embedded block coding with optimized
truncation) [271.

In decompression, arithmetic decoding and dequantization of the code-blocks give the decompressed,
quantized wavelet coefficients Wq[Y, y-, ik]. Then the inverse DWT (IDWT) is applied to produce the approx-
imated PC image '[iX, y-, k].

2.3 RATE ALLOCATION AMONG PC IMAGES

To this point, we have described the two main compression steps: spectral compression via PCA/KLT
and spatial compression of the individual PC images with JPEG2000. Each PC image Y[i., y-, k] can be
assigned a different spatial rate Rspat,k, and the EBCOT algorithm ensures that it will be spatially compressed
to minimize MSD(Y[i,yf, k], Y[Y, y-, k]) for the given value of Rspat,k. Thus, if the overall rate Rkvrl is
given,2 we must still choose the spatial rates {Rspat,k}; this is the problem of rate allocation.

Equal-Rate Allocation The first method uses equal-rate allocation. Given &,vrI, one simply chooses N,
(N < N,.), the number of PC images to retain, and sets Rspatk to be the same for all of them. Because of
the energy-packing property of PCA/KLT, the first PC images contain most of the energy in X, so we keep
PC images 1, 2 ... , N, and discard the remaining ones. The spectral compression ratio is simply

N,rspec - N- (14)

'The PC images are spectrally uncorrelated but not necessarily spectrally independent; however, as in many separable compres-
sion schemes, any remaining dependence is typically assumed to be weak and is ignored.

"2Recall that the equivalent overall compression ratio is rvi = B/R,,,.
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It follows that the retained PC images all have the same spatial rate,

Rspat,k = Rovrj N, k = 1, 2,... , (15)

There is nothing optimal about this method, but it is a simple approach that we use mainly as a basis for
comparison with the allocation method below.

MSD-Optimal Allocation The equal-rate allocation uses the same rate PRpat,k for all retained PC images.
However, the variances of the PC images can differ widely. For example, the first PC image might contain
80% of the energy, and the fifth only 1-2%; less distortion should result by making R•pat,1 greater than
Rspat,.5. This section reviews a common procedure for selecting {!pat,k} for MSD-optimal allocation.

The distortion-rate function D(R) of information theory [5] gives the theoretical lower bound D on the
resulting distortion when data produced by a source are compressed at a rate R. For N independent sources
with respective distortion-rate functions Dk(Rk), the problem of rate allocation [27, 30] is to select {. }
to minimize the overall distortion (1/N,) -k Dk(Rk) subject to the rate constraint (1/N,) 'Ek Rk = Rovrl.

Applying the Lagrange multiplier method to solve this problem yields the equal-slope or Pareto condition
aDk/aRk = -7r*, Vk, where the optimum Lagrange multiplier value rr > 0 is chosen to satisfy the rate
constraint Rovri.

For the purpose of rate allocation in this work, we use MSD distortion and assume each spectrum
X[x, y, k] is the output of a vector Gaussian source with mean vector X and covariance matrix K.Vx.
Since PCA/KLT is a unitary transform, the MSD in the PCA/KLT domain equals the MSD in the usual
HSI domain, and the PC images Y[F, #', k] represent outputs from N, independent Gaussian sources with
respective variances ý = Ak. With this assumption, rate allocation can be accomplished in a straightforward
manner using a bisection search. A review of the rate allocation problem is given in Appendix A.

The assumption of Gaussian data is, of course, a crude approximation. Better allocation results could
be achieved by modeling the distributions of the PC images more accurately. Alternatively, one could
implement an operational allocation method, which compresses and decompresses each PC image over a
range of rates, tabulates the resulting PCA/KLT-domain MSDs, and then performs discrete optimization.
Such methods require a substantial increase in complexity and were therefore not used in this study.
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3. DERIVED DATA PRODUCTS

Remotely sensed HSI data can be used to characterize the environment, both on the ground and in the

atmosphere. In this section, we review two data products derived from HSI data.

3.1 NORMALIZED DIFFERENCE VEGETATION INDEX

The first data product is the normalized difference vegetation index (NDVI). NDVI measures spectral
differences around the red edge (red and NIR wavelengths) and is commonly used to represent the health
and amount of vegetation [28]. The NDVI is defined as

NDVI = p(NIR) - p(red) (16)

p(NIR) + p(red)'

where p(NIR) and p(red) represent near-infrared and red band reflectances, respectively.

The rationale behind (16) can be understood as follows. The chlorophyll present in healthy vegetation
absorbs visible light in the red wavelengths and reflects infrared radiation. Consequently, the surface spectra
of healthy and/or dense vegetation generally exhibits a decrease in the radiance at red wavelengths and a
large increase at near infrared (NIR) wavelengths. The spectra of other land-cover types may have high
values in the NIR or low values in the red, but vegetation tends to be unique in having this combination.
The numerator in (16) follows. The denominator in the equation normalizes for factors such as slope and
changes in illumination [17).

NDVI takes on values between -1 and +1. Larger positive values represent increasingly healthy or

dense vegetation. Values near zero indicate rock or bare soil, and negative values are associated with water,
snow and ice, or barren terrain. NDVI is employed to distinguish vegetation from other land cover types
and to assess the density, health, or stress of vegetation. It also finds use in the prediction of droughts and
identification of areas where the risk of fire is high.

In this work, the red band is taken as the average intensity from 626.19 nm to 692.88 nm, and the
near-infrared band from 779.14 nm to 807.91 nm. These bands correspond to the spectral resolution of
LANDSAT bands 3 and 4, respectively. Additionally, in this report, NDVI was computed using radiance
rather than reflectance values. Since the atmospheric path radiance is low in both the red and NIR bands,
atmospheric correction was deemed unnecessary [25, Ch. 5].

3.2 COLUMN WATER VAPOR

The second data product considered is integrated column water vapor (CWV). CWV measures the
water vapor content in a vertical path from the Earth's surface to the sensor. CWV is expressed in units of
grams per centimeters or more often just centimeters of water vapor [7]. CWV is commonly used in the
atmospheric compensation process to define the atmospheric transmission due to water vapor [9].

Following [7], the at-sensor radiance for a down-looking airborne sensor can be expressed as

Lsmsn.•or(A) = Lsn(A)T(A) p(A) + Lpath (A), (17)
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Figure 4. Atmospheric transmittance of water vapor for nominal atmospheric conditions.

where L,,n(A) is the solar radiance, r-(A) (0 < T-(A) _< 1) is the total atmospheric transmittance from the
sun to the surface to the sensor, p(A) is the surface reflectance, and I4ath((A) is the path-scattered radiance.

Figure 4 displays the atmospheric transmittance due to water vapor across the VNIR/SWIR for nom-
inal atmospheric conditions. Water vapor in the atmosphere absorbs solar and surface-reflected radiance at
wavelengths near 720, 820, 910, 940, 1140, 1380, 1880, and 2180 nm [7]. Around these wavelengths, the
atmospheric transmittance -r(A) displays sharp troughs. The wavelengths associated with these troughs are
called water vapor absorption bands. The figure shows two absorption bands - at 940 and 1 40 nm - in
light blue. Typically, -r(A) is greater than 0.90 or even 0.99 outside of the absorption bands, while it drops
sharply to near 0.50, 0.20, or near zero in the absorption bands. The spectrally flat, high-transmittance bands
adjacent to an absorption band are known as atmospheric windows.

The surface reflectance p(A) of natural materials generally varies smoothly in the VNIR region. In
particular, p(A) is approximately linear across the water vapor absorption bands. If the transmittance were
not attenuated in an absorption band, then the at-sensor radiance Lensor(ZA) would be approximately linear
between the atmospheric windows associated with the absorption band.

CWV is estimated based upon the above observations. A number of methods for estimating CWV ex-
ist [7, 8, 9, 14, 15], so we describe the general ideas only. First, radiance values in the atmospheric windows
and those in the absorption bands are used to estimate a pseudo-transmittance N(A) in the absorption bands.
This step exploits the linearity of p(A) described above. Second, i-(A) is compared with transmittances
derived from radiative transfer models with differing CWV amounts. The estimated CWV is then extracted
from the model whose transmittances agree most closely with N(A).

Some methods [7, 14] employ the absorption bands at 940 and 1140 nm, while others [9] use an
additional absorption band at 910 nm. The other absorption features are usually not exploited, either because

12



they do not attenuate T(A) sufficiently or because their attenuation of T(A) does not vary much with CWV.
This work used the method described by Griffin and Burke [9).
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4. EFFECTS ON DERIVED DATA PRODUCTS

Experiments were performed on an HSI cube from AVIRIS (Airborne Visible Infrared Imaging Spec-
trometer). AVIRIS is a whiskbroom HSI sensor with 614 pixels in the cross-track direction and spectral
coverage of 400-2500 nm in 224 bands with a nominal spectral resolution of 10 nm/band. The data was
collected from an airborne platform at 20 km altitude over Moffett Field, located near the San Francisco Bay
in California. The ground sample distance for this data is approximately 20 m. The original radiance cube
has dimensions of 614 x 512 x 224, with each radiance value stored as a 16-bit integer. The original cube,
designated by X, thus occupies 134 MB. Figure 5 shows an RGB image of the original scene.

X was compressed using the method in Section 2 and a number of different compression settings.
The PCA/KLT side information (X and (P) required Bsid, = 32 bits per value, so Sside = 1612800 bytes.
For the equal-rate allocation method, AT was set to 5, 10, or 20, and overall compression ratios r(,,,, of 50,
100, or 200 were chosen. The MSD-optimal allocation method also used •vr1 = 50, 100, and 200.

Figure 5. RGB image of Moffett Field AVIRIS cube.

4.1 COMPARISON OF RATE ALLOCATION METHODS

This section discusses results that illustrate the differences between the two rate-allocation methods.
First, the upper graph in Figure 6 shows the eigenvalues k* associated with the PC images Y[., W, k] after
PCA is performed on X. As is characteristic of PCA, the eigenvalues appear in descending order, which
shows the well-known energy-packing property of PCA. The lower graph in the figure shows the percentage
of the total variance of X formed by the PC images. The percentages for only the first 30 PC images are
shown. The blue curve shows the individual percentage for each PC image (cf. (12)), and the red curve
shows the cumulative percentage (cf. (13)). The first PC image Y[:F, W, 1] accounts for about 60 percent of
the total variance in X, the second PC image Y[iY, Y, 2] for about 30 percent, and so forth. From the red
curve, the first five PC images account for over 99% of the total variance in X.

Figure 7 contains three graphs, each showing the resulting spatial compression ratios for a different
overall compression ratio Towvr. For the equal-rate method, the graphs show essentially horizontal lines since
each retained PC image is compressed at the same spatial ratio (cf. (15)). For a given overall compression
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ratio, retaining more PC images means that the retained PC images must be compressed more.

However, for the MSD-optimal rate allocation method, each graph shows a monotonically increasing
curve. In general, the MSD-optimal allocation method compresses the first 2-3 PC images less than the
equal-rate method. The first PC image is spatially compressed the least, the second PC image is compressed
slightly more, and so forth. The trend of increasing spatial compression ratios agrees with the fact that
higher-index PC images contain a smaller portion of the total variance of X (cf. Figure 6). Compared to the
lower-index PC images, they can be compressed at higher spatial compression ratios without affecting the
overall MSD as much.

Next, Figure 8 shows two different distortion measures, RMSD(X,.X) and MAD(XX), plotted
against the overall compression ratio. The connected curves show the trend for a given rate allocation
method. The three unconnected points show the distortion and effective overall compression ratio when only
PCA is used, and the retained PC images are not compressed spatially. Under both RMSD and MAD, the
MSD-optimal rate allocation method performs best. Compared to using PCA only (no spatial compression),
the MSD-optimal method yields overall compression ratios about five times higher. Compared to the equal-
rate allocation method, the MSD-optimal method produces a much lower distortion at the same overall
compression ratio.

4.2 SPECTRAL DISTORTION

Figure 9 shows the average power in X versus wavelength. There are four distinct water vapor ab-
sorption bands around 940, 1100, 1370, and 1850 nm. The green bars indicate the wavelengths used in the
computation of NDVI (Section 3. 1 ), and the light blue bars indicate the wavelengths used in the computation
of CWV (Section 3.2).

Finally, Figure 10 shows plots of the ratio of the average power to the average MSD versus wavelength
for different overall compression ratios and allocation methods. Not surprisingly, as the compression ratio
increases from 50 to 200, the power-to-MSD ratios decrease across the entire spectrum. Consistent with
Figure 8, the MSD-optimal method has the highest power-to-MSD ratio in almost every band and in all
three graphs. At the NDVI wavelengths, the power-to-MSD ratio for the MSD-optimal method is several
decibels higher than that for the equal-rate allocation methods. At the CWV wavelengths, the MSD-optimal
method has the highest power-to-MSD ratio when rov0 j = 50. However, when rovrl = 100, this ratio becomes
comparable to that for the equal-rate method with NV, = 10, and with r(vrl reaches 200, this ratio falls several
decibels below the ratio for the equal-rate method with IV = 10. In addition, in the remaining absorption
bands (near 1370 and 1850 nm), all of the allocation methods produced comparable power-to-MSD ratios.

These observations can be understood by considering the graph in Figure 9 and the allocation meth-
ods. As a result of PCA, the errors due to lossy compression are distributed across all bands. The absorption
bands - particularly those around 1370 and 1850 nm - already have low power, so they show corre-
spondingly lower power-to-MSD ratios than other wavelengths. With regard to the allocation methods, the
MSD-optimal method attempts to minimize the MSD; it does not consider the power-to-MSD ratio in any
particular band. The equal-rate method does not perform any optimization at all. If the MSD is roughly
evenly distributed among all bands, the low-power bands will suffer more than high-power bands in terms
of their power-to-MSD ratios.
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4.3 EFFECTS ON NORMALIZED DIFFERENCE VEGETATION INDEX

Figure 11 shows the NDVI image resulting from the original, noncompressed HSI data cube. The
white-to-green color scale shows more positive values of NDVI in deeper shades of green and smaller or
negative values in white.

NDVI difference images with and without compression are shown in Figure 12. Each column com-
pares the difference images for different rate allocation methods. From top to bottom, the methods are:
equal-rate with N, = 5, equal-rate with N, = 10, equal-rate with N, = 20, and MSD-optimal. Across each
row, the desired overall compression ratio increases from 50 to 100 and then to 200. The color bar shows
that differences closer to zero are white, with increasing positive and negative differences shown as deeper
shades of red and blue, respectively.

The figures show that the equal-rate method with Y, = 5 has the greatest NDVI differences across all
compression ratios, while the MSD-optimal method has the smallest differences at each compression ratio.
In addition, the MSD-optimal method with a compression ratio of 100 has differences comparable to the
equal-rate method with N, = 10 and a compression ratio of 50.

Figure 13 shows a graph with the MAD between the NDVI image from the noncompressed HSI data
and the NDVI image after compression for a variety of compression settings. In addition, the unconnected
points show performance for PCA only and no spatial compression. The MSD-optimal rate allocation
method outperforms the other allocation methods. In agreement with the previous figure, the MSD-optimal
method with rovrl = 100 has MAD only slightly higher than the equal-rate method with rovrl = 50. Referring
back to Figure 10, we see that the MSD-optimal method maintains a higher power-to-MSD ratio in the bands
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Figure II. NDVI image for Moffett Field.

used for computing NDVI.

4.4 EFFECTS ON INTEGRATED COLUMN WATER VAPOR

The next set of results examines the effects of compression on the CWV product. The CWV image
for the noncompressed HSI data appears in Figure 14, where the blue color scale shows higher CWV values
as brighter shades of blue. Since the CWV calculation is not reliable over bodies of water, they have been
blocked out in the image.

Figure 15 shows CWV difference images. The top row, which shows results for the equal-rate al-
location method and N, = 5, indicates that retaining only 5 PC images is likely insufficient regardless of
how much or how little they are compressed spatially. Results with the equal-rate method are better when
10 or 20 PC images (second and third rows) are retained. The MSD-optimal method performs best when

rov,, -- 50; at this compression ratio, it retained 25 PC images. At 7bvrl = 100, the MSD-optimal method
performs comparably to the equal-rate method with IV = 10 and slightly better than the equal-rate method
with N. = 20. Finally, at rovrl = 200, the equal-rate method with N' = 10 has the best performance, and
the MSD-optimal method retained only 5 PC images and so its CWV difference image looks very similar to
those in the top row.

The MAD between the CWV image from the noncompressed HSI data and the CWV images after
compression is graphed in Figure 16. The individual points for PCA only with no spatial compression show
small MAD values when either 10 or 20 PC images are retained but a sharp increase in MAD when only
5 PC images are retained. The connected curves show results when spatial compression and the different
rate allocation methods are applied. With an overall compression ratio of fifty, the MSD-optimal method
and equal-rate method with NY = 10 or N. = 20 perform comparably. As the overall compression ratio
increases, the MSD-optimal method begins to perform worse than the equal-rate methods.

Recall from Figure 7 that for overall compression ratios of 50, 100, and 200, the MSD-optimal method
retained 28, 13, and 5 PC images, respectively. Hence, at a compression ratio of 200, the MSD-optimal
method cannot perform any better than only using PCA and retaining the first 5 PC images. In addition,
Figure 10 shows that in the bands used to compute CWV, the power-to-MSD ratio for the MSD-optimal
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method drops below that for the equal-rate method with M = 10 and N' = 20.

4.5 DISCUSSION

These results indicate that the example data products (NDVI and CWV) can tolerate a certain amount
of lossy compression. They also show that, compared to using PCA alone without any spatial compression,
PCA and spatial compression of the retained PC images can offer significant gains in compression without
degrading results.

In addition, the importance of proper rate allocation among the PC images is evident. In general, the
MSD-optimal rate allocation method produced better results than the equal-rate allocation method. With

> 1.8 cm

< 0.8 cm

Figure 14. CWV image for Moffett Field.
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regard to distortion measures like RMSD and MAD, it yielded consistently lower distortions than the equal-
rate method. With NDVI, the MSD-optimal method also had the best performance. However, with CWV, it
did not always perform best.

This behavior is consistent with the fact that MSD distortion is an average measure and therefore
does not consider the distortion in a particular spectral band. As the desired compression ratio increases,
the MSD-optimal allocation method retains fewer PC images and spatially compresses them more, and
PCA/KLT distributes the distortion across all bands. NDVI uses bands that have high power, and therefore
can tolerate some distortion before the power-to-MSD ratio becomes too low and the NDVI data product
becomes degraded. In contrast, CWV employs water-vapor absorption bands, which have somewhat lower
power.

The equal-rate methods perform no optimization in their selection of IV or the spatial compression
ratio for each retained PC image. Provided that rovrl and N, are large enough, then the distortion in the
absorption bands remains small enough so that the CWV data product does not become unacceptably de-
graded. Note, however, that there is no way to predict what rovrl and N, should be.
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5. CLASSIFICATION SCHEMES

The previous section considered a number of data products derived from HSI data. Another important
application of HSI data is classification. The data products considered above yield real-valued images of
NDVI or CWV, so it is straightforward to examine the error between the images with and without iossy
compression. However, classification assigns a discrete label to each pixel, so some care is required when
evaluating the effects of compression. The next few sections of this report review some basic classification
schemes, discuss the evaluation of classifier performance, and then study how compression affects classifi-
cation results.

Given an N, x × xy Nx , HSI cube Z, classification is the process of assigning each pixel Z[x, y,k]
to one of L possible classes. The L classes must be mutually exclusive and totally exhaustive to ensure
that each pixel is assigned to one and only one class [4]. Each class is a collection of pixels, which need
not be spatially connected but are deemed to be alike in some way. A class might be labelled with an
associated high-level meaning such as "road," "grass," or "forest." Given the variability of natural materials
and imaging conditions, such high-level designations may require the expertise of an image analyst. With
machine classification, a class usually consists of pixel spectra that are close together in some quantifiable
sense. In any case, classification reduces the multidimensional, variable details of a pixel spectrum to a
single, discrete designation. The result of classification is an AN x Ny integer-valued class image C, where
C[x, y] = g E f 1, 2.... , L} indicates that the pixel Z[x, y,k] has been assigned to class f.

5.1 CLASSIFICATION ALGORITHMS

In this work, we consider two simple but popular supervised machine classification algorithms: the
Euclidean minimum distance (EMD) classifier, and the spectral angle mapper (SAM). The algorithms are
supervised in the sense that a user must provide them with a spectral library, a set L ={i, ý*2 ...... ' L } of
L distinct spectra representing the different classes.

Central to both classifiers is a distance measure d(-, -) that quantifies how close a spectrum Z[x, y,k]
is to a library spectrum Y* E L. EMD uses Euclidean distance,

d = ( Iit-i;II.

SAM employs spectral angle,
d(iiJ) =

Given the cube Z and spectral library L, the classifier operates as follows: For each spectrum ZIx, y,k], the
classifier finds

arg min d(Z[x, y, k], 9p).

That is, e* is the index of the closest library spectrum. Then the classifier sets C[x, y] = e to make the class
assignment. Note that both algorithms operate on individual pixel spectra only; they do not consider spatial
relationships.

In some versions of these classification algorithms, the distance d(Z[x, yfk], Y.) must also be below
some threshold; otherwise, the pixel is labelled as unclassified (C[x, y] = 0). This option was not exercised
for the work in this report.
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These classifiers are very simple but nonetheless worth investigating. Euclidean distance corresponds
directly to MSD distortion, so we might expect a simple relationship between MSD and compression-
induced changes in EMD classification. In contrast, the spectral angle between two spectra can be very
small even if the Euclidean distance between them is large. For example, consider i" = aut with and a >> 1;
then jiL' - i37 = ja - 11 IIIi, but 0(i, 7) = 0. Consequently, SAM provides a case where the distortion
measure used for compression does not relate to the distance measure used for classification.

5.2 CONFUSION MATRIX

Classification is a hard-decision process; each pixel must be assigned to exactly one class. Pixels will
occasionally be assigned to the wrong class for a number of reasons. Natural materials possess inherent
variability. Also, the spatial area being imaged by a single HSI pixel might contain multiple materials.
Finally, energy reflected or emitted from nearby materials might bleed into the pixel as a result of scattering.
The confusion matrix is a standard tool for summarizing the correct and incorrect assignments generated by
a classification method [4].

Let Crer[X, y] be a truth or reference classification image. Also, let C[x, y] be the class image returned
by a classifier. The confusion matrix M is an L x L matrix of nonnegative integers. It compares the actual
or assigned class image C[x, y] with the reference class image Ge[x, y]. Matrix element Mij gives the
number of times that C[x, y] = i and Cref[x, y] = j, i.e., the number of times the classifier assigned a pixel
to class i when the pixel belongs to class j in the reference class image.

Portions of the subsequent discussion will treat C and Gef as realizations of two ergodic, multinomial
random processes, C and Cref. In practice, such a distinction is often ignored. However, it is necessary in
the development of statistical tests for evaluating classification performance. We use the boldface symbols
to distinguish between realizations (C, Qef) and stochastic processes (C, Cref).

We quickly review some quantities commonly associated with the confusion matrix. First, let Ppwod(j)
denote the producer's accuracy probability for class j,

Ppro~d(j) = Pr(C[x, y] = jICref[x, y] = j).

In practice, Pprd(j) is estimated from the confusion matrix M. Denote the sum down the jth column of M
by M.j = EI=1 Mij. Mj equals the true number of pixels from class j that are present. Then-pro(j), the
estimated producer's accuracy probability for class j, is

Pprod(j) = Pr(C[xy] =jlCref[X, j) -= A= Mj (18)

Pprod(j) is frequently referred to as the producer's accuracy for class j. It tells us, of all the reference class-j
pixels, how many were correctly placed into class j by the classifier.

Similarly, the user's accuracy probability for class i is denoted by Puer(i),

Puser(i) = Pr(Cref[x, y] = ilC[x, y] = i).
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This probability is also estimated from the confusion matrix. The sum across the ith row of M is given by
M. Z= 1 Mij, the total number of pixels put into class i by the classifier. The estimate of Puser(i) is then

Puser(i) = P9-r(Cref[X, y1 = iIC[x, y] = Mii _ - Mii (19)Ej= It_ Mij"

Puser(i) is commonly called the user's accuracy for class i, and it tells us, of all the pixels that the classifier
placed - both correctly and incorrectly - into class i, how many are truly in class i.

Finally, the overall accuracy probability Povrl is defined as

L
P.ort = Pr(C[x, y] = Cf[X, y]) = I Pr(C[x, y] = j, Gref[X, y] j). (20)

j=1

Pvwr is also often referred to as the probability of correct classification (PJ,). Povr0 can be estimated from M
as follows. Let M.. denote the sum of all elements of M (so M. = NXNy). Then the estimate of Povr, is

L

!o,= Pr(C[x, y] Cref[X, y]) = > Pr(C[x, y] = j, Cref[x,y] = j)
j=1

L

SPr(C[x, Y] = iICr[fX, Y] =j) PAr(Crefrx, y] j)
j=1

LM Mj _ 1 L 
(21)J=1" M~j M.. M.. j=1z- J'(1

where Pr(Crf[x, y] = j) is estimated via

Pr(Cref[x, y] = j) - E Mij, J = 1, 2,..., L. (22)
M. ZM ij,i=1

The estimate Pov.i is known as the overall accuracy.

5.3 KAPPA COEFFICIENT

The producer's, user's, and overall accuracy probabilities measure different aspects of classification
performance. Taken individually, none is sufficient for summarizing the performance of a classifier [4]. For
a particular class, the producer's accuracy probability might be high, but the user's accuracy probability low,
and vice versa. Also, the overall accuracy P.ovr captures only the diagonal of the confusion matrix. Note
that the probability of error PE is simply PE = 1 - Povr,, so its estimate !IE = 1 - P^vr, only includes the
diagonal of the confusion matrix as well.

The kappa coefficient K provides an alternative scalar measure of classification performance [3, 4]
that compares the overall accuracy probability against the probability of chance agreement. K is defined as

K =Povr1 - Pchance (23)
1 - Pchance
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where
L

Pchance = Pr(C[x,y] = i) Pr(Cref[x,y] = i) (24)
i= 1

is the probability that a pixel is correctly classified by chance.

K, an estimate of K, can be computed from the confusion matrix. First, the estimate follows the form
of (23):

Pk= ovrl - Pchance (25)

1 - Pchance

Second, P,,,,r is estimated from M as in (21). Third, Pchance is estimated by combining Pr(Cref[X, iyl = A)
in (22) with

1Mi. LPrCx y] =M. . E MiJ' i= 1,2,.... , L, (26)

j=1

so that
L 1 L

chance = Prr(C[x, y] = i)P0r(Cf[x, y] = i) Mi.Mi. (27)

Finally, the resulting maximum likelihood estimate of K is obtained by substituting the equations forP,,vrl
and Pcniance into (25):

M L I ~ L1 ,M
k_- M.. i=iM - Z=I Mi.M. (28)

M.- LI M,. M.,

Equation (28) is the expression for kappa given in many documents (e.g., [21, Ch. 6]) but without much
explanation of the associated stochastic interpretation.

Unlike Pproj(j), Puser(i), and wovrl (or PLb), k incorporates both the diagonal and marginals (column
and row sums) of the confusion matrix. It does not, however, take into account the producer's and user's
accuracies.

Some intuition into the form (23) of K can be gained by writing Povrw as

L

Povrt = ZPr(e[x,y] = iICref[X,y] = i) Pr(CGf[x, y] = i). (29)

In this equation, the conditional probability Pr(G[x, y] = iIQf[x, y] = i) reflects the dependence of the
classifier output C[x, y] upon the actual reference class value Gef[x, y]. If the classifier accurately labels a
pixel as class i when the pixel truly belongs to class i, then Pr(C[x, y] = ilQef[x, y] = i) should be close
to unity. If the classifier performed perfectly, then Pr(C[x, y] = ilref[X, y] = i) would equal I for i = 1,
2 ... , L, and Povrl would equal 1.

Next, the chance agreement probability Pchance can be considered the probability of correct classifi-
cation if the classifier output C[x, y] were conditionally independent of the reference pixel value ed[x, y],
i.e., if

Pr(C[x, y] = ilCref[x, y] = i) = Pr(C[x, y] = i).
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Then (24) can be written as

L
Pchance = P~(G[X, y] -- iCrefx, y] = ) Pr(Cref[:x, y] -- i

i= 1 C) and Cr, conditionally independent

L

= 5Pr(C[x,y] = i) Pr(Cref[x,y] = i).
i=1

Conceptually, Tchance is the probability of correct classification that would result if the classifier output
C[x, y] bore no relation to the actual class value CG[x, y]. It can also be thought of as the expected prob-
ability of correct classification if the class labels in C[x, y] were assigned randomly using the distribution
Pr(C[x, y] = i).3

From this discussion, even if the classifier output C[x, y] bears no relation to the actual class labels
Cret[X, y], we expect to have correct classification with probability Pchance. Also, the best possible proba-
bility of correct classification is unity. In (23), the kappa coefficient K first removes the bias due to chance
agreement and then normalizes the result Povrl - Pchance by the best possible result, 1 - chance-

Values of K close to unity indicate that classification is better than chance, while a value of zero means
the classification is no better than chance. (K can even take on negative values, although this occurs very
rarely and indicates that the classifier is performing worse than chance. In such a case, one would be better
off simply assigning class labels in C[x, y] at random, rather than using the classifier.) Some authors [161
have also suggested the following scale for evaluating the agreement between C and Qef:

0.8 < K < 1 strong agreement;

0.4 < K < 0.8 moderate agreement;

K < 0.4 poor agreement.

5.4 KAPPA ANALYSIS

Kappa analysis is a method for determining whether or not classification differences are statistically
significant [4]. In the stochastic interpretation of kappa analysis, K is itself a random variable, andk in (28)
is an estimate of K. Kappa analysis also provides an estimate 62 of the variance of k. The estimates of

K
k and 6•2 can be used to provide confidence intervals on K. We repeat the expression from Congalton and

K
Green [4, p. 50]:

•2 1 01(1 - 01) 2(1 - 01)(20102 - 03) (1 - 01)2(04 - 40.21
SM.. [ (1-2)2 + (1 - 02  + (1-92Y _ J (30)

where

I L L L

,= 1 - E 92 0 2  >M i.M.3, = +2 M1, (Mi +M.j), (31)
M .i=l 1 

"i-

'This is roughly analogous to rolling a pair of fair dice many times: one-sixth of the time, "doubles" will occur, even though the
dice do not influence one another.
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and
L L

04-- Z Z Mj (Mj. + M.,) 2 . (32)
'" j=1

Statistical significance tests can be applied because, under the multinomial sampling model of kappa
analysis, k is asymptotically normally distributed. For example, if K = 0, then the classifier does not
perform any better than random classification. A statistical test to determine whether or not K = 0 consists
of the competing hypotheses [4]:

HO:K=0;

H, :K 0.

With the estimates k and &•, the appropriate test statistic is
KR

Z-

K

which has a standard normal distribution. Ho is rejected if Z ŽZa2 at significance level a. Otherwise, Ho
is accepted.

5.5 OTHER STATISTICAL MEASURES OF CLASSIFICATION PERFORMANCE

A number of measures of classification performance similar to K have been proposed. Although they
are not used in this study, they nonetheless deserve mention. Like K in (23), these other measures have the
form

Povrl - !bias
1 - Pbias

where Port is the overall accuracy probability, and Igias is a bias probability that is subtracted to eliminate
the influence of correct classifications that occur purely by chance. Povrl is given by (20) and estimated
using (21). The classification measures differ in their choice of the bias probability Rias.

For the kappa coefficient, the bias probability is

L

Pbias = Pchance = Pr(C[x, y] = i) Pr(Crf [x, y] = i).
i=1

In practice, Pchance is estimated from the empirical estimates Pr(C[x, y] = i) and Pr(Cref[x, y] = i) of (26)

and (22).

Brennan and Prediger [1], Foody [6], and Ma and Redmond [18] suggest using gia = 1/L. Ma
and Redmond argue that, when Cref is generated by unsupervised classification methods, there is no prior
knowledge of how many pixels will likely be assigned to each class, so the a priori probabilities should be
the same for all classes; i.e., Pr(Cref[x, y] = i) = 11L, i = 1, 2 .. L. Consequently,

L1 1
Pbias. ZPr(C[x, y] = i) L - L (33)

i=3
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which results in the performance measure

Povrt - 1/L

Te - 1L(34)

Ma and Redmond call T•, "Tau for use with classifications based on equal probabilities of [class] member-
ship" [18]. The same measure results in the case of supervised classification when the operator supervising
classification assumes Pr(Creflx, y] = i) = 1/L. The estimated value ofT, is T, = (Povrl-1/L)/(1-1/L).

Ma and Redmond also suggest a generalization in which Pr(Qef[x, y] = i) is estimated from other
sources, such as "a previous survey of group population, an estimation of group population from aerial
photos, or an arbitrary decision for the importance of groups" [18]. In this case, they denote the measure by
TP = (Povrl - Pbias)/(1 - Pbias), with the corresponding estimate

Povrl -bias (35)

1 - !bia(

where P5vrl is given by (21), and

L L

lbias= -r(C[x, y] = i) Pr(Cre[x. y] =i) . Mi. Pr(Cref[x, y] = i), (36)SM .. =

Equations for the variances of T, and T4 and test statistics for evaluating classifier performance appear
in [18].

Additional measures of classifier performance that are related to kappa are "conditional kappa" and
"weighted kappa" [4]. Conditional kappa is useful when one is interested in the classifier performance for
a particular class. Weighted kappa is appropriate when certain classification errors are more important than
others and can be weighted accordingly.

5.6 ONE-KAPPA TEST FOR ASSESSMENT OF COMPRESSION EFFECTS

Kappa analysis as described in Section 5.4 is typically used to determine whether or not a classifier
performs significantly better than chance assignment, or whether or not two confusion matrices are signif-
icantly different. In a similar way, we apply kappa analysis on one or two confusion matrices to evaluate
the (dis)similarity between classifications before and after lossy compression. These tests allow one to
determine whether or not lossy compression has had a significant effect on the classification results.

The first method, or one-kappa test, involves a single confusion matrix or kappa coefficient. The test
assesses the agreement between classification results from the same classifier before and after compression.
A classifier is first applied to X, the entire original, noncompressed cube, and the resulting class image
provides Corg. Then the same classifier is applied to X, a decompressed version of the cube, to produce a
post-compression class image Ccomp. The question is, "For a given classifier, does compression significantly
change its results?"

To answer this question, we obtain the confusion matrix and kappa coefficient K from org and CoImkp
and then perform kappa analysis. A diagram of the approach is shown in Figure 17. We assume that some
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Figure 17. Diagram of one-kappa test.

minimum acceptable kappa coefficient Kmin E [0, 1] is given; Kmin should be close to unity. If K > &,in,
then we declare that Ccomp is acceptable; otherwise, we declare that Qomp differs too greatly from Corig.
This idea yields the following test with maximum significance level a,:

H0 K = Kmin, (overcompression); (37)

H1 K > Kmin, (acceptable).

The test statistic is
/T -- Kmini

z 1 - , (38)

where Z1 has a standard normal distribution [4]. We accept H1 if Z1 > z,( and reject H1 if Z, < z(".

In (37), the probability of Type I error (accept H1 when H0 is true) is greatest for K = Kmin and
lower for K < Kmnin; that is, Pr(accept H, Ho true) = a for K = Kin, and Pr(accept H, Ho true) < a
for K < Kmin. Thus, we protect ourselves against the worst possible probability of Type I error [12].
Such an error corresponds to an overcompression error: We incorrectly decide that the post-compression
classification result is acceptable, when in reality lossy compression has discarded too much information. In
contrast, a Type II error (accept H0 when H1 is true) is an undercompression error. We cannot determine
the probability of Type II error unless we replace H1 with an equality such as H, : K = K1 , and then
this probability only holds for that particular value of K1. Since overcompression may have more serious
consequences than undercompression (cf. Section 1.3), we have arranged the test to limit the probability of
overcompression error.

5.7 TWO-KAPPA TEST FOR ASSESSMENT OF COMPRESSION EFFECTS

In the one-kappa test, the reference Corig does not represent the truth; rather, Corig is just the class
image produced by the classifier without compression. Hence, the test decides whether or not a classifier
remains consistent with itself following compression. Thus, if the classifier performs poorly in the absence
of compression, the test determines whether or not the classifier continues to perform poorly after lossy
compression. The test says nothing about how closely the class images agree with truth. Even without
compression, a classifier will not typically classify all pixels correctly. This fact leads us to a two-kappa test,
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which compares two kappa coefficients to answer the question, "For a given classifie, does compression

significantly reduce its agreement with truth ?"

This approach appears in Figure 1 8. For this test, we use Qruth to emphasize that the reference class

image represents truth. First, we apply a classifier to X to produce the class image Qoig and compute the

kappa coefficient Korig from Ctruth and Corig. Next, we apply the same classifier to X•, obtain the post-

compression class image 0comp, and determine a second kappa coefficient Icomp from 0truth and Cemp We

assume we can tolerate some maximum degradation AKron > 0 after compression and construct a test with

maximum significance level a•:

H0 IKg - K = AKto1, (overcompression);D39)

H1 :K, nrg - Kcom~p < AK 1 o1, (acceptable).

The test statistic is
Khcohg comporp AKtas (40)

K'" %',rg Kciump

where ,ifc and m are the estimates of the standard deviations of/Iig and a. Zt has a standard

normal distribution (4].

If Zap r_ -z, we accept H1 ; otherwise, we reject H, . Since AK 1to > 0, the test also accepts Hc

(with maximum significance level d) in the case where IKomp > Ko0g, i.e., where compression improves

classifier performance; such behavior could occur in the conventional approach because lossy compression

can have a denoising effect [2]. Finally, like (37), (39) is posed such that a Type I error corresponds to an
overcompression error.

35



6. EXPERIMENTAL RESULTS

This section documents results for an HSI cube of a forest scene (Forest Radiance, run05) in the
HYDICE data collection. This data was collected from an airborne platform at an altitude of 1.5 km; at this
altitude, the ground sample distance is approximately 0.8 m. The HYDICE sensor returns data as 12-bit
unsigned integers. However, calibration increases the dynamic range and occasionally produces negative
values [ 13]; hence, the radiance values are stored as 16-bit signed integers.

The initial radiance cube had dimensions of 320 x 1280 x 210 but was modified prior to the com-
pression experiments. Spatially, the ten leftmost and rightmost columns were discarded because they cor-
responded to all-zero pixels at the edges of the sensor focal plane array. Spectrally, bands corresponding to
the water-absorption wavelengths were eliminated. This preparation step yielded an original cube X of size
300 x 1280 x 145, requiring 106 MB (111.36 x 106 bytes) of storage. All rates and compression ratios are
reported relative to this cube. The actual dynamic range of X was -121 to 12911.

The compression scheme described in Section 2 was then applied to X for a variety of compres-
sion settings. The PCA/KLT side information (X and 4)) required Bside = 32 bits per value, so &d,

84680 bytes. The equal-rate allocation method used A' = 145, 50, 20, 15, 10, and 5, and overall compres-
sion ratios rvrl ranging from 14.5 up to about 340. Recall that for this method, with rvrl and N,' given,
rspat,k = (N:/Nc)/rovri for each retained PC image. The MSD-optimal allocation method used the same
values of rovri.

Figure 19 shows a graph of the eigenvalues for the modified radiance cube. Like Figure 6 for Moffett
Field, the first few eigenvalues have much larger values than subsequent eigenvalues. Next, Figure 20 shows
an example of the allocation results for 7ibvrl - 30. The equal-rate allocation method compresses each
retained PC image at almost the same spatial compression ratio, while the MSD-optimal rate allocation
method compresses the first few PC images very little and increases the amount of spatial compression for
the later PC images. Finally, Figure 21 shows the values of IV selected by the MSD-optimal method as
a function of rovri. Note also that for each choice of A,', the retained PC images were compressed with
different spatial compression ratios.

Figure 22 shows RGB images for a portion of the original cube X and several decompressed cubes.
At rovrl ; 30, the decompressed cubes look very similar to X. At rovrl c 340, compression artifacts are
obvious for the equal-rate allocation, less so for the MSD-optimal allocation.

In order to generate an initial set of classes, we employed the ISODATA unsupervised clustering al-
gorithm [ 10]. ISODATA begins by randomly choosing a number of initial mean spectra as cluster centroids;
then an iterative procedure follows: First, each pixel in X is assigned to the cluster whose centroid is closest
in a Euclidean-distance sense. Second, the standard deviations of the resulting clusters are then computed,
and clusters with large standard deviations are split. Third, the centroids of the resulting clusters are com-
puted, and clusters whose centroids are close together are merged. Finally, the procecedure is repeated until
it converges, producing L clusters. We denote the class image associated with the final clustering by Qs,,
and the corresponding set of class means by £s. A portion of Cio appears in Figure 23, along with the
corresponding RGB image. For the given cube, ISODATA produced 15 clusters, which served as the basic
classes: In the following classification results, the number of classes is L = 15.
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6.1 DISTORTION RESULTS

Figure 24 shows plots of both RMSD(XX) and MSAD(X, X) versus the overall compression ratio:'
The curves associated with the equal-rate allocation scheme are marked with the corresponding value of I.
The curve corresponding to the MSD-optimal allocation is marked "MSD-opt."

As expected, the MSD-optimal allocation has substantially lower RMSD over the entire range of %6vrl-
With regard to MSAD, the MSD-optimal allocation has the smallest distortion for rovrt < 200, while the
equal-rate allocation with NIV = 5 is slightly better for larger values of Tbvri. Recall that for these large values
of rovrl, the MSD-optimal allocation retained only 3-5 PC images.

6.2 CLASSIFICATION RESULTS

To prepare for the one-kappa test, we adopted 4,so from ISODATA as our spectral library. We applied
either the EMD or SAM classifier to X, and the resulting class image served as the reference class image
Corig; the ISODATA class image Ciso was not used with this test. For each decompressed cube X, the same
classifier was again applied to produce a post-compression class image Qomp. Lastly, / was determined
from Corig and Ccomp. Figures 25 and 26 show portions of the class images produced by the EMD and
SAM classifiers, respectively. Consistent with Figure 22, Ccomp is similar to orig at rovrl = 29 for both
allocations, but many differences appear for the equal-rate allocation at r"vrl = 340.

The test was performed with a = 0.01 and Kmii = 0.95. Figure 27 shows the results for EMD
and SAM classification as rTovrl is varied. The 100(1 - a)% confidence intervals associated with k were
extremely narrow and are not shown. The dotted line indicates Am Ifn i lies entirely above this line, then
we decide that the classification differences are insignificant. For EMD classification, the MSD-optimal
allocation results in considerably less performance degradation than the equal-rate allocations. It does not
cause significant degradation provided that rovrl < 200, while the equal-rate allocations yield acceptable
results for rovrl < 105. For SAM classification, the MSD-optimal allocation again produced better results
than the equal-rate allocation, but the amount of compression that could be tolerated was lower.

For the two-kappa test, we again used &iso as the spectral library, but we also employed Q, as the
truth class image; i.e., Qtruth = Ciso. Recall that a portion of Ciso appears in Figure 23. Either the EMD
or SAM classifier was applied to X to generate Corig, and korig followed from Ciso and Corig. For each
decompressed cube X, we again performed classification to obtain Q0op and determined /omp from Ciso
and Ccomp.

Figure 28 shows the results with a = 0.01 and AKtol = 0.05. Again the confidence intervals were
narrow and are omitted. We decided that the classification differences are not significant wheneverk!•rig -
kcornp lies entirely below the dotted line for AKtol. For EMD classification, korig = 0.9553, indicating that
Gong agreed very closely with Qiso (cf. Figures 22 and 25). With compression, the MSD-optimal allocation
outperformed the equal-rate allocations again; it caused no significant change in classification performance
up to rovrl = 305. For SAM classification, Korig = 0.5297, which indicates moderate agreement between

4Peak signal to noise ratio (PSNR) is often used instead of RMSD. However, the calibrated radiance data usually span only a
portion of the possible dynamic range, which makes computation of PSNR difficult 1131. so we do not report it.
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Conig and Ciso (cf. Figures 22 and 26). This result is not too surprising because ISODATA employs Euclidean
distance, but SAM uses spectral angle. The MSD-optimal allocation resulted in the fewest differences and
did not cause significant degradation over the entire range of wvrl tested. Here, the equal-rate allocation also
performed well for N, = 5.

6.3 DISTORTION AND CLASSIFICATION RESULTS

The graphs in Figures 24, 27, and 28 also show that both distortion and classification differences
change monotonically as rovrl increases. Such behavior suggests that distortion might be used to anticipate
classification degradation.

An example appears in Figure 29. For the MSD-optimal allocation, EMD classification degrades with
increasing RMSD and becomes unacceptable for RMSD > 65; SAM classification remains acceptable until
RMSD > 45. Similar behavior for the two-kappa test can be observed in Figure 30.
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Figure 19. Eigenvalues for Forest Radiance. Only the first eight), eigenvalues are shown.
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Figure 20. Example allocation results for Forest Radiance for an overall compression ratio of 30.
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Figure 21. Number of PC images retained by MSD-optimal allocation for Forest Radiance.
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Figure 22. RGB images of a portion of the original and decompressed Forest Radiance cubes.
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Figure 23. Original RGB image and ISODATA class image Ci,,, for Forest Radiance.
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Figure 24. Distortion vs. compression ratio for Forest Radiance.
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Figure 25. Class images for EMD classifier and Forest Radiance.
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Figure 26. Class images for SAM classifier and Forest Radiance.

45



Euclidean Minimum Distance Classifier

Kmin

0.9 MSD-opt.

0.8 N '=5
C

S0.7 -N '=10

N '15
Nq =20C

0.6

N '= 50
C

0.5

N '= 145
C

0.4
0 50 100 150 200 250 300 350 400 450

Overall Compression Ratio

Spectral Angle Mapper

Kmin

0.9

MSD-opt.

0.8 N '=5
C

'•::4 0.7 -N = 10

N '= 15
N =20

C
0.6

N '= 50
C

0.5

N '= 145
C

0.4
0 50 100 150 200 250 300 350 400 450

Overall Compression Ratio

Figure 27. One-kappa test vs. compression ratio for Forest Radiance.
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Figure 28. Two-kappa test vs. compression ratio for Forest Radiance.
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Figure 29. One-kappa test vs. RMSD for Forest Radiance.
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Figure 30. Two-kappa test vs. RMSD for Forest Radiance.
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7. SUMMARY AND CONCLUSIONS

We have demonstrated the need for lossy compression of HSI data and discussed strategies and ap-
proaches to the problem. We have adopted the conventional approach, in which traditional compression
methods and traditional application processing algorithms are employed. Other approaches, while poten-
tially beneficial, tend to be specific to a single application and can become unwieldy given the complexities
of both the compression scheme and application processing.

We have examined some effects of lossy compression of HSI data for data products and background
classification. The compression scheme consists of spectral compression via PCAIKLT followed by spatial
compression of the PC images via JPEG2000. Data products considered were the normalized difference veg-
etation index (NDVI) and integrated column water vapor (CWV). To assess compression-induced changes
in classification results, we proposed two statistical tests based on kappa analysis; the tests allow us to limit
the probability of overcompression error, which we deem more serious than an undercompression error.

The experimental results demonstrated the importance of spatial rate allocation among the PC images.
The equal-rate allocation method does not consider distortion at all. It simply compresses a selected num-
ber of PC images at the same spatial compression ratio. In contrast, the MSD-optimal method considers
the average squared distortion over all spectral bands, not the distortion in each individual spectral band.
Although it attempts to produce the smallest RMSD between the noncompressed and decompressed data, it
may do so at the expense of increased distortion in some bands.

The MSD-optimal allocation method produced the smallest RMSD and MAD between the noncom-
pressed and decompressed data at all compression ratios. In addition, this method produced the smallest
MSAD at lower (< 200) compression ratios. At high compression ratios (> 200), the MSD-optimal method
retained only 3-5 PC images, and the equal-rate method slightly outperformed it.

With regard to NDVI, the MSD-optimal allocation method yielded smaller errors than the equal-
rate allocations did. For CWV, it displayed the best results at lower compression ratios (50), but at high
compression ratios (200), the equal-rate method performed better when a sufficient number of PC images
were retained. This behavior is explained by recognizing that CWV is calculated from water-absorption
bands, which have low signal power and therefore can incur significant spectral distortion under the MSD-
optimal allocation method at high compression ratios.

For classification, the MSD-optimal method consistently produced significantly better results than
equal-rate allocations. Remarkably, compression did not significantly change classification results even at
overall compression ratios as high as 100-340. We note that the spectral library was derived from in-scene
data and thus represented a kind of "best-case" library. Also, background classification is perhaps not as
demanding as some other HSI applications. Lossy compression and background classification are somewhat
alike in the sense that compression tends to preserve coarse features and discard fine ones, and classification
tends to classify together spectra that are roughly similar but might differ in their fine details. However, for
a similar compression scheme, Shen and Kasner [26] reported "no appreciable degradation" for anomaly
detection and material identification at compression ratios up to 48, the highest they tested.

In summary, these results show that HSI data possesses a large amount of redundancy, which can be
exploited by lossy compression to produce high compression ratios without significantly degrading appli-
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cation performance. Rate allocation is an important topic, since it determines how the limited resource of
storage or transmission bandwidth is consumed. For the applications tested, the MSD-optimal allocation
method generally outperformed the simple equal-rate method. Finally, statistical tests are encouraged as
a means for evaluating the effects of lossy compression on application results and protecting against an
overcompression error. The example application of background classification proposed two such tests.

Some avenues for future research follow naturally from this study. Although we have examined some
data products and classification, another important area of interest is the effect of lossy compression on the
detection of targets or anomalies in hyperspectral data. This topic is the subject of another ongoing study.
Regarding rate allocation, the methods employed here are both standard techniques in lossy compression.
An area of high potential benefit is the development of other allocation methods that consider the importance
of different spectral bands. Statistical tests to assess effects of compression on applications can also be
developed for other applications. For detection applications, tests could use a measure such as the area
under the receiver operating characteristic (ROC) curve. For quantitative data products, standard tests such
as the t-test [12, Ch. 7] could be employed.
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A. RATE ALLOCATION

Assume there are N independent sources with respective distortion-rate functions !)(Ri), i = 1, 2,
N. Let the desired rate be Rdes. For the allocation R = (RI, R 2 ,.••, RN), the average distortion is

D(R) =D(RI,R2 ,...,RN) = I

i= 1

and the rate is 1N

R(R) = NZRi.

The rate allocation problem is then
N N

m}D(R) = mi D(R) such that R(R) = Y R, = d (41)
R {R i 1 N N i'

Equation (41) is a classic constrained optimization problem, which can be solved by applying the
Lagrange multiplier method. Construct the Lagrangian cost function J(R),

S[1~N

J(R)= D(R) + T[R(R) - Rdes] = N Di(Ri) + 71 N Ri - Rdesl•

Setting 0,1/OR1 = 0 for each i yields the equal-slope or Pareto condition

OD• - Vi, 
(42)

where the optimum Lagrange multiplier value rj* > 0 is chosen so that (1/N)Z 1 Ri = Rde..

For a scalar Gaussian source with variance o2 and MSD distortion, D(R) = 022-2R = o2-hl H1

[5]. For other sources, D(R) is often approximated as D(R) , Co2eR, R > 0, where C and -y are
positive constants [30]. In the remaining discussion, assume that

Di(,,) = Oa, '', Ri > 0, i = 1,2.... ,N. (43)

The Pareto condition (42) gives

D - Cia cr2 e-IiRj = -71*, i = 1.2,...,N.

OR,

Solving this equation for Ri gives the solution

R* =max - In 0,0 i=1,2.. N. (44)
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Convexity of the assumed distortion-rate functions means that 7f can be determined efficiently using a
bisection search.

The associated distortions can be calculated by substituting (44) into (43):

Di(R*) = > 0; i=1,2,..., N.

Hence, the sources that are assigned a positive rate have distortions that are proportional to 7-•, the re-
ciprocal of their exponential constant -4. In the case where all sources have the same exponential constant
"-yi = -y, V Zi, the sources with positive rates operate at the same distortion, rt/-y.
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